Course Fundamentals of classical mechanics
Introduction to the physics of our everyday life.
Level 2 requires school mathematics. Suitable for pupils.
- 1
- 2
- 3
Related formulas
Formula $$ p ~=~ \class{brown}{m} \, v $$Mechanical Momentum (Velocity, Mass)
Related Illustrations
- 4
Related formulas
Formula $$ v'_2 ~=~ v_1 \, \left( \frac{2m_1}{ m_1 + m_2 } \right) ~+~ v_2 \, \left( \frac{m_2 - m_1}{ m_1 + m_2 } \right) $$Head-on Central Collision (Velocity, Mass)
- 5
Related formulas
Formula $$ y ~=~ -\frac{g}{ 2\,{v_0}^2 } \, x^2 ~+~ y_0 $$Horizontal throw - parabola (height, velocity, distance)
Formula $$ t_{\text d} ~=~ \sqrt{ \frac{2\, y_0}{ g } } $$Horizontal throw (throw duration, initial height)
Formula $$ w ~=~ v_0 \, \sqrt{ \frac{2\, y_0}{ g } } $$Horizontal throw (throw distance, initial velocity, initial height)
Formula $$ y(t) ~=~ y_0 ~+~ v_{\text y0} \, t ~-~ \frac{1}{2}\,g\,t^2 $$Oblique Throw (Height, Time, Velocity)
Formula $$ v ~=~ \sqrt{ {v_{\text x}}^2 ~+~ {v_{\text y}}^2 } $$Horizontal / Oblique Throw (Total Speed)
Formula $$ \varphi ~=~ \arctan\left( \frac{ v_{\text y} }{ v_{\text x} } \right) $$Horizontal Throw (Angle of Impact)
Related Illustrations
- 6
Questions & Answers
Derivations & Experiments
Related formulas
Formula $$ a_{ \text z } ~=~ \frac{{\class{blue}{v}}^2}{ r } $$Circular Motion (Centripetal Acceleration, Velocity, Radius)
Formula $$ a_{ \text z } ~=~ \frac{4\pi^2 \, r}{ T^2 } $$Circular Motion (Centripetal Acceleration, Period)
Formula $$ a_{ \text z } ~=~ {\class{red}{\omega}}^2 \, r $$Circular Motion (Centripetal Acceleration, Angular Velocity)
Formula $$ a_{ \text z } ~=~ 4\pi^2 \, f^2 \, r $$Circular Motion (Centripetal Acceleration, Frequency)
Formula $$ F_{ \text z} ~=~ \frac{\class{brown}{m} \, \class{blue}{v}^2}{ r } $$Circular motion (centripetal force, velocity, radius)
Formula $$ F_{ \text z } ~=~ 4\pi^2 \, f^2 \, \class{brown}{m} \, r $$Circular Motion (Centripetal Force, Frequency)
Formula $$ F_{ \text z } ~=~ \frac{4\pi^2 \, \class{brown}{m} \, r}{ T^2 } $$Circular Motion (Centripetal Force, Period)
Formula $$ F_{\text z} ~=~ m \, {\class{red}{\omega}}^2 \, r $$Circular motion (angular velocity, centripetal force, radius)
Formula $$ \class{blue}{v} ~=~ r \, \class{red}{\omega} $$Uniform Circular Motion (Orbital and Angular Velocity)
Formula $$ \varphi ~=~ \omega_0 \, t ~+~ \frac{1}{2} \, \class{red}{\alpha} \, t^2 $$Non-Uniform Circular Motion (Traversed Angle, Angular Acceleration)
Formula $$ \class{blue}{a_{\text{tan}}} ~=~ r \, \class{red}{\alpha} $$Non-Uniform Circular Motion (Tangential and Angular Acceleration)
Related Illustrations