## Physical Quantities and Their Units

List of important physical quantities, their symbols, (derived) units and examples with images.

Introduction to the physics of our everyday life.

- 1
Lesson ## Physical Quantities and Their Units

List of important physical quantities, their symbols, (derived) units and examples with images.

- 2
Lesson ## The 12 Important Physical Constants

Learn about important physical constants and what their formula symbols and SI units are.

- 3
Lesson ## Mechanical Momentum in Physics

Here it is explained quite simply what the mechanical momentum is, how you can calculate and illustrate it.

## Related formulas

Formula ## Mechanical Momentum (Velocity, Mass)

`$$ p ~=~ \class{brown}{m} \, v $$`## Related Illustrations

- 4
Derivation ## Head-on Elastic Collision and its 4 Special Cases

Derivation of the velocity formula for the elastic head-on collision of two different masses using conservation of momentum and conservation of energy.

## Related formulas

Formula ## Head-on Central Collision (Velocity, Mass)

`$$ v'_2 ~=~ v_1 \, \left( \frac{2m_1}{ m_1 + m_2 } \right) ~+~ v_2 \, \left( \frac{m_2 - m_1}{ m_1 + m_2 } \right) $$` - 5
Lesson ## Horizontal Throw: How Bodies Fall in a Gravitational Field

Here all important formulas for the horizontal throw are derived and discussed, e.g. throw distance and throw time.

## Related formulas

Formula ## Horizontal throw - parabola (height, velocity, distance)

`$$ y ~=~ -\frac{g}{ 2\,{v_0}^2 } \, x^2 ~+~ y_0 $$`Formula ## Horizontal throw (throw duration, initial height)

`$$ t_{\text d} ~=~ \sqrt{ \frac{2\, y_0}{ g } } $$`Formula ## Horizontal throw (throw distance, initial velocity, initial height)

`$$ w ~=~ v_0 \, \sqrt{ \frac{2\, y_0}{ g } } $$`Formula ## Oblique Throw (Height, Time, Velocity)

`$$ y(t) ~=~ y_0 ~+~ v_{\text y0} \, t ~-~ \frac{1}{2}\,g\,t^2 $$`Formula ## Horizontal / Oblique Throw (Total Speed)

`$$ v ~=~ \sqrt{ {v_{\text x}}^2 ~+~ {v_{\text y}}^2 } $$`Formula ## Horizontal Throw (Angle of Impact)

`$$ \varphi ~=~ \arctan\left( \frac{ v_{\text y} }{ v_{\text x} } \right) $$`## Related Illustrations

- 6
Lesson ## Uniform Circular Motion and its Important Quantities

Uniform circular motion from physics simply explained - here you will learn about centripetal acceleration and centripetal force and how they arise.

## Questions & Answers

## Derivations & Experiments

Derivation ## Centripetal Acceleration and Force

Derivation of the centripetal (radial) acceleration for a uniform circular motion. It is then related to the centripetal force.

## Related formulas

Formula ## Circular Motion (Centripetal Acceleration, Velocity, Radius)

`$$ a_{ \text z } ~=~ \frac{{\class{blue}{v}}^2}{ r } $$`Formula ## Circular Motion (Centripetal Acceleration, Period)

`$$ a_{ \text z } ~=~ \frac{4\pi^2 \, r}{ T^2 } $$`Formula ## Circular Motion (Centripetal Acceleration, Angular Velocity)

`$$ a_{ \text z } ~=~ {\class{red}{\omega}}^2 \, r $$`Formula ## Circular Motion (Centripetal Acceleration, Frequency)

`$$ a_{ \text z } ~=~ 4\pi^2 \, f^2 \, r $$`Formula ## Circular motion (centripetal force, velocity, radius)

`$$ F_{ \text z} ~=~ \frac{\class{brown}{m} \, \class{blue}{v}^2}{ r } $$`Formula ## Circular Motion (Centripetal Force, Frequency)

`$$ F_{ \text z } ~=~ 4\pi^2 \, f^2 \, \class{brown}{m} \, r $$`Formula ## Circular Motion (Centripetal Force, Period)

`$$ F_{ \text z } ~=~ \frac{4\pi^2 \, \class{brown}{m} \, r}{ T^2 } $$`Formula ## Circular motion (angular velocity, centripetal force, radius)

`$$ F_{\text z} ~=~ m \, {\class{red}{\omega}}^2 \, r $$`Formula ## Uniform Circular Motion (Orbital and Angular Velocity)

`$$ \class{blue}{v} ~=~ r \, \class{red}{\omega} $$`Formula ## Non-Uniform Circular Motion (Traversed Angle, Angular Acceleration)

`$$ \varphi ~=~ \omega_0 \, t ~+~ \frac{1}{2} \, \class{red}{\alpha} \, t^2 $$`Formula ## Non-Uniform Circular Motion (Tangential and Angular Acceleration)

`$$ \class{blue}{a_{\text{tan}}} ~=~ r \, \class{red}{\alpha} $$`## Related Illustrations