Course Advanced Classical Mechanics
Mechanics with vectors, derivatives and integrals.
- 1
Questions & Answers
Related formulas
Formula $$ \class{brown}{I} ~=~ \class{brown}{m} \, r^2 $$Thin circular ring (moment of inertia)
Formula $$ \class{brown}{I} ~=~ \frac{2}{5} \, \class{brown}{m} \, r^2 $$Moment of Inertia - Sphere (Axis of Rotation Through the Center)
Formula $$ \class{brown}{I} ~=~ \frac{\class{brown}{m}}{12} \, \left( l^2 + w^2 \right) $$Moment of Inertia - Cuboid with Axis of Rotation Through the Center Point
Formula $$ \class{brown}{I} ~=~ \frac{1}{2} \, \class{brown}{m} \, \left( r^2 ~+~ \frac{w^2}{6} \right) $$Moment of Inertia - Hollow Cylinder (Axis of Rotation Parallel to Radius)
Formula $$ \class{brown}{I} ~=~ \frac{1}{2} \, m \, {\class{purple}{r}}^2 $$Solid cylinder - axis of symmetry (moment of inertia)
Formula $$ \class{brown}{I} ~=~ \frac{1}{12} \, \class{brown}{m} \, l^2 $$Moment of Inertia - Solid Cylinder (Rotation Perpendicular to Symmetry Axis)
Formula $$ I ~=~ I_{\text{CM}} ~+~ \class{brown}{m} \, h^2 $$Steiner's Theorem (Moment of Inertia)
- 2
Derivations & Experiments