Course Basics of Electricity and Magnetism
Electromagnetic phenomena and their applications
Level 2 requires school mathematics. Suitable for pupils.
- 1
Related formulas
Formula $$ I ~=~ \frac{Q}{t} $$Electric current (definition)
- 2
Related formulas
Formula $$ W ~=~ q \, U $$Electrical Energy (Work, Voltage, Charge)
- 3
Questions & Answers
Related formulas
Formula $$ U ~=~ R \, I $$Ohm's Law (Resistance, Voltage, Current)
- 4
Questions & Answers
Related formulas
Formula $$ R ~=~ R_1 ~+~ R_2 ~+~ R_3 ~+~ ... $$Series circuit (total resistance, equivalent resistance)
Formula $$ \frac{1}{R} ~=~ \frac{1}{R_1} ~+~ \frac{1}{R_2} ~+~ \frac{1}{R_3} ~+~ ... $$Parallel connection (total resistance, equivalent resistance)
Formula $$ U_{\text{out}} = \frac{R_2}{R_1 + R_2} \, U_{\text{in}} $$Voltage Divider (Output and Input Voltage, Resistors)
- 5
Related formulas
Formula $$ P ~=~ U \, I $$Electric power (voltage, current)
Formula $$ P ~=~ R \, I^2 $$Electric Power (Current, Resistance)
Formula $$ P ~=~ \frac{U^2}{R} $$Electric Power (Voltage, Resistance)
Formula $$ U ~=~ R \, I $$Ohm's Law (Resistance, Voltage, Current)
Formula $$ I ~=~ \frac{Q}{t} $$Electric current (definition)
Related Illustrations
- 6
Quests with solutions
Derivations & Experiments
Related formulas
Formula $$ F ~=~ q \, \frac{U}{d} $$Plate Capacitor (Force, Voltage, Charge, Distance)
Formula $$ C ~=~ \varepsilon_0 \, \varepsilon_{\text r} \, \frac{A}{d} $$Plate Capacitor (Capacitance)
Formula $$ W_{\text{e}} ~=~ \frac{1}{2} \, \varepsilon_0 \, \varepsilon_{\text r} \, V \, E^2 $$Plate Capacitor (Energy, Electric Field)
Formula $$ E ~=~ \frac{U}{d} $$Plate Capacitor (Electric Field, Voltage, Distance)
Formula $$ W_{\text{e}} ~=~ \frac{1}{2} \, \frac{Q^2}{C} $$Capacitor (Energy, Capacitance, Charge)
Formula $$ W_{\text e} ~=~ \frac{1}{2} \, C \, U^2 $$Capacitor (Energy, Voltage, Capacitance)
Formula $$ \varphi_x = - \frac{U}{d} \, x ~+~ \varphi_1 $$Plate capacitor (potential, voltage, distance)
- 7
Related formulas
Formula $$ X_{\text C} ~=~ -\frac{1}{2\pi \, f \, C} $$Capacitive Reactance (Capacitance, Frequency)
Related Illustrations
- 8
Related formulas
Formula $$ \class{brown}{X_{\text L}} ~=~ 2 \pi \, f \, L $$Inductive Reactance (Inductance, Frequency)
Related Illustrations
- 9
Related Illustrations
Left and Right Hand Rule using 3 Fingers Moving Electric Charge Magnetic Field Direction in a Horseshoe Magnet Symbols for the magnetic field direction perpendicular to the plane Lorentz force on a positive charge in the magnetic field Lorentz force on a negative charge in the magnetic field Current in the Conductor Swing in the Horseshoe Magnet - 10
Derivations & Experiments
Related formulas
Formula $$ \class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B} $$Lorentz Force (Magnetic field, Velocity)
Formula $$ r ~=~ \frac{ \class{brown}{m} \, \class{blue}{v} }{ |q| \, \class{violet}{B} } $$Circular Motion in a Magnetic Field (Radius, Velocity, Mass)
Formula $$ f ~=~ \frac{|q| \, \class{violet}{B}}{2\pi \, \class{brown}{m}} $$Cyclotron Frequency (B-field, Charge, Mass)
Formula $$ T ~=~ 2 \, \pi \frac{ \class{brown}{m} }{ |q| \, \class{violet}{B} } $$Circular Motion in the Magnetic Field (Period, Charge, Mass)
Formula $$ \class{green}{F} ~=~ \class{blue}{I} \, L \, \class{violet}{B} $$Current-Carrying Wire in Magnetic Field (Force, Current, Length)
Formula $$ \class{green}{F} ~=~ \frac{\mu_0 \, L}{2 \pi} \, \frac{ \class{blue}{I_1} \, \class{blue}{I_2} }{r} $$Two Current-Carrying Wires (Force, Current, Distance)
Related Illustrations
Lorentz force: electron in a magnetic field Electron in magnetic field perpendicular to direction of motion Electron movement at an angle to the magnetic field Spiral motion of an electron in a magnetic field Cross product between velocity and magnetic field Lorentz force on a current-carrying wire in a magnetic field Attractive Lorentz force - two current-carrying wires of the same direction Repulsive Lorentz force - two conductors with current flowing in opposite directions - 11
Related formulas
Formula $$ \class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B} $$Lorentz Force (Magnetic field, Velocity)
Formula $$ F ~=~ q \, E $$Charge in an Electric Field (Force, Charge)
Related Illustrations
- 12
Derivations & Experiments
Related formulas
Formula $$ U_{\text H} ~=~ A_{\text H} \, \frac{I \, \class{violet}{B}}{d} $$Hall Effect (Voltage, Hall Coefficient, Current, B-Field)
Formula $$ U_\text{H} ~=~ \frac{1}{n \, q} ~ \frac{I \, \class{violet}{B}}{d} $$Hall Effect (Hall Voltage, Charge Carrier Density)
Formula $$ U_\text{H} ~=~ v \, \class{violet}{B} \, h $$Hall Effect (Voltage, Drift Velocity)
Formula $$ A_{\text H} ~=~ \frac{ \class{red}{p} \,{\mu_{\text +}}^2 ~-~ \class{blue}{n} \, {\mu_{\text -}}^2}{e \, (\class{red}{p} \, \mu_{\text +} ~+~ \class{blue}{n} \, \mu_{\text -})^2} $$Hall constant (Electron and Hole Mobilities, Charge Carrier Density)
Related Illustrations
- 13
Related formulas
Formula $$ \frac{1}{C} ~=~ \frac{1}{C_1} ~+~ \frac{1}{C_2} ~+~... ~+~ \frac{1}{C_n} $$Series circuit of capacitors (capacitance)
Formula $$ C ~=~ C_1 + C_2 + ~...~ + C_n $$Parallel connection (total capacitance / equivalent capacitance)
Related Illustrations
- 14
Related formulas
Formula $$ L ~=~ L_1 ~+~ L_2 ~+~ ... ~+~ L_n $$Series circuit of coils (inductance)
Formula $$ \frac{1}{L} ~=~ \frac{1}{L_1} ~+~ \frac{1}{L_2} ~+~ ... ~+~ \frac{1}{L_n} $$Parallel circuit of coils (inductance)
Related Illustrations