VideoLevel 2 (without higher mathematics)7 Differences between an Electric and Magnetic Field Here you will learn 7 important differences between the electric field (E) and the magnetic field (B).
Current-carrying wire - magnetic field lines outside FormulaCurrent-Carrying Wire (Magnetic Field Outside) $$ \class{violet}{B(}r\class{violet}{)} ~=~ \frac{\mu_0 \, I}{2\pi} \, \frac{1}{r} $$
Cross Section of a Coaxial Cable with Dimensions Derivation Level 4 (for physics pros)Magnetic Field Inside and Outside a Coaxial Cable Derivation of the magnetic field (B-field) of a coaxial cable, inside and outside, by exploiting Ampere's law.
A long conductor loop moves into the magnetic field FormulaInduced Voltage along a Moving Rectangular Loop (B-Field, Velocity) $$ U_{\text{ind}} ~=~ - \class{violet}{B} \, w \, v $$
Electron orbit in magnetic field due to Lorentz force FormulaCircular Motion in a Magnetic Field (Radius, Velocity, Mass) $$ r ~=~ \frac{ \class{brown}{m} \, \class{blue}{v} }{ |q| \, \class{violet}{B} } $$
Basic Setup of a Velocity Filter FormulaIdeal Velocity Filter (Magnetic Field, Voltage) $$ \class{blue}{v} ~=~ \frac{1}{d} \, \frac{U}{\class{violet}{B}} $$
Kreisbewegung einer Ladung im Magnetfeld FormulaSpecific Charge (Magnetic Field, Velocity, Radius) $$ \frac{q}{m} ~=~ \frac{ \class{red}{v} }{ r \, \class{violet}{B}} $$
Force on a positive charge in the E-field of a plate capacitor FormulaCapacitor (Energy, Voltage, Capacitance) $$ W_{\text e} ~=~ \frac{1}{2} \, C \, U^2 $$
Magnetischer Dipol im Magnetfeld FormulaMagnetic Dipole (Potential Energy) $$ W_{\mu} = -\boldsymbol{\mu} \cdot \class{violet}{\boldsymbol{B}} $$
Imaginary Sphere Surface around a Point Charge Derivation Level 4 (for physics pros)Coulomb's Law using 1st Maxwell Equation Here you will learn how to derive Coulomb's law for two point charges from divergence theorem and Maxwell's first equation.
4. Maxwell-Gleichung: Stom erzeugt Magnetfeld Formula4. Maxwell Equation of Electrostatics (integral form) $$ \oint_{S} \class{violet}{\boldsymbol{B}} ~\cdot~ \text{d}\boldsymbol{s} ~=~ \mu_0 \, \class{red}{I} $$