## Discharging Capacitor (Discharge Current, Capacitance, Resistance, Time)

` $$ I(t) ~=~ -I_0 \, \mathrm{e}^{-\frac{t}{R\,C}} $$ `

Learn about the electromagnetic properties of our universe, for example about electric charges, currents, electromagnetic fields and so on.

` $$ I(t) ~=~ -I_0 \, \mathrm{e}^{-\frac{t}{R\,C}} $$ `

` $$ t_{\text h} ~=~ R\,C \, \ln(2) $$ `

` $$ \tau ~=~ R \, C $$ `

` $$ \varphi_x = - \frac{U}{d} \, x ~+~ \varphi_1 $$ `

Here, the electrostatic potential, electric field and the capacitance of a plate capacitor are derived using Laplace's equation.

` $$ \class{violet}{B}(z) ~=~ \frac{\mu_0 \, I}{2} \, \frac{ R^2 }{ (R^2 ~+~ z^2)^{\frac{3}{2}} } $$ `

` $$ I_0 ~=~ \frac{ Q_0 }{ \sqrt{ L \, C } } $$ `

` $$ W ~=~ q \, U $$ `

` $$ R ~=~ R_1 ~+~ R_2 ~+~ R_3 ~+~ ... $$ `

Here you will learn how an electrical circuit works and how to apply Ohm's Law to it. You will also learn about parallel and series circuits and their difference.

` $$ \tan(\varphi) ~=~ \frac{ \omega \, L ~-~ \frac{1}{\omega \, C} }{ R } $$ `

` $$ |Z| ~=~ \sqrt{ R^2 ~+~ \left( \omega \, L ~-~ \frac{1}{\omega \, C} \right)^2 } $$ `

` $$ \class{violet}{B} ~=~ \mu_0 \, \mu_{\text r} \, \frac{ \class{red}{I} \, N }{ l } $$ `

` $$ \nabla^2 \, \class{violet}{\boldsymbol{B}} ~=~ \mu_0 \, \varepsilon_0 \, \frac{\partial^2 \class{violet}{\boldsymbol{B}}}{\partial t^2} $$ `

` $$ \nabla^2 \, \class{gray}{\boldsymbol{E}} ~=~ \mu_0 \, \varepsilon_0 \, \frac{\partial^2 \class{gray}{\boldsymbol{E}}}{\partial t^2} $$ `