Formula Bohr Magneton
$$\mu_{\text B} ~=~ \frac{e}{2m_{\text e}} \, \hbar ~=~ 9.274 \,\cdot\, 10^{-24} \, \frac{\text J}{\text T}$$ $$\mu_{\text B} ~=~ \frac{e}{2m_{\text e}} \, \hbar ~=~ 9.274 \,\cdot\, 10^{-24} \, \frac{\text J}{\text T}$$
Bohr magneton
$$ \mu_{\text B} $$ Unit $$ $$ Magnitude of the magnetic dipole moment generated by an electron with orbital angular momentum quantum number \( l ~=~ 1 \) due to its orbital angular momentum.
Electron mass
$$ m_{\text e} $$ Unit $$ \mathrm{kg} $$ Electron mass is a physical constant and has the value: \( m_{\text e} ~=~ 9.109 \,\cdot\, 10^{-31} \, \text{kg} \).
Elementary charge
$$ e $$ Unit $$ \mathrm{C} = \mathrm{As} $$ The elementary charge is a physical constant and is the smallest, freely existing electric charge in our universe. It has the exact value:$$ e ~=~ 1.602 \, 176 \, 634 ~\cdot~ 10^{-19} \, \mathrm{C} $$
Reduced Planck's constant
$$ \hbar $$ Unit $$ \mathrm{Js} $$ Reduced Planck's constant is a physical constant (of quantum mechanics) and has the value: \( \hbar ~=~ \frac{h}{2\pi} ~=~ 1.054 \,\cdot\, 10^{-34} \, \text{Js} \).