Formula Energy Band Gap of Germanium (Temperature Dependence)
$$W_{\text g} ~=~ 0.742\,\text{eV} - 3.90 \cdot 10^{-4} \, \frac{ \text{eV} }{ \text{K} } \cdot T$$ $$W_{\text g} ~=~ 0.742\,\text{eV} - 3.90 \cdot 10^{-4} \, \frac{ \text{eV} }{ \text{K} } \cdot T$$
Energy gap
$$ W_{\text g} $$ Unit $$ \mathrm{J} $$ Energy gap of germanium (Ge), that is, the energy gap between the valence band maximum and conduction band minimum.
Temperature \(T\) | Energy gap \(W_{\text g}\) |
---|---|
0 K | 0.742 eV |
300 K | 0.625 eV |
1000 K | 0.352 eV |
This formula for the temperature dependence of the band gap is an experimental fit.
Temperature
$$ T $$ Unit $$ \mathrm{K} $$ Temperature of the germanium material in Kelvin. The band gap decreases linearly with temperature.