# Formula Specific Charge of a Charged Particle in a Magnetic Field Mass Velocity Radius

## Electric charge

`$$ q $$`Unit

`$$ \mathrm{C} = \mathrm{As} $$`

Electric charge of the particle (e.g. the electron) moving on a circular path in a magnetic field.

The ratio of the charge \(q\) to the mass \(m\) of the particle is called **specific charge** \( \frac{q}{m} \). For example, the electron has a specific charge \( \frac{q}{m} = - 1.758 \cdot 10^{11} \, \frac{\text C}{\text{kg} } \).

## Mass

`$$ m $$`Unit

`$$ \mathrm{kg} $$`

Mass of the charged particle.

- If the particle is a
**electron**, then the mass is \( m = 9.1 \cdot 10^{-31} \, \text{kg} \). - If the particle is a
**proton**, then the mass is \( m = 1.67 \cdot 10^{-27} \, \text{kg} \).

Natürlich kannst du auch andere geladene Teilchen haben...

## Velocity

`$$ \class{red}{v} $$`Unit

`$$ \frac{\mathrm m}{\mathrm s} $$`

Velocity of the particle. It is greater the stronger the magnetic field \(\class{violet}{B}\) and the smaller the mass \(m\) of the particle.

## Magnetic field

`$$ \class{violet}{B} $$`Unit

`$$ \mathrm{T} = \frac{\mathrm{kg}}{\mathrm{A} \, \mathrm{s}^2} $$`

Magnetic flux density, which describes how strong the magnetic field is as the charged particle moves.

## Radius

`$$ r $$`Unit

`$$ \mathrm{m} $$`

Radius of the circular path on which the charged particle moves. By changing the magnetic field \(\class{violet}{B}\) you can easily make the radius \(r\) of the circular path larger or smaller.