Formula Orbital angular momentum of circular motion Angular momentum Mass Radius Velocity
$$\class{green}{L} = m \, r \, \class{brown}{v}$$ $$\class{green}{L} = m \, r \, \class{brown}{v}$$ $$m = \frac{\class{green}{L}}{r \, \class{brown}{v}}$$ $$r = \frac{\class{green}{L}}{m \, \class{brown}{v}}$$ $$\class{brown}{v} = \frac{\class{green}{L}}{m\, r}$$
Angular momentum
$$ \class{green}{L} $$ Unit $$ \mathrm{Js} $$ Orbital angular momentum of a point mass (e.g. a planet) orbiting at a certain orbital velocity at a certain distance from the axis of rotation. The angular momentum vector is perpendicular to the orbital velocity and the radius vector.
Mass
$$ m $$ Unit $$ \mathrm{kg} $$ Mass of the body moving on a circular path. The greater the mass, the greater the orbital angular momentum.
Radius
$$ r $$ Unit $$ \mathrm{m} $$ Radius of the circular path. This is the distance of the mass from the axis of rotation. If you double the radius (while keeping the speed constant), then the orbital angular momentum quadruples.
Velocity
$$ \class{brown}{v} $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$ Constant orbital velocity of the body. It is always directed tangentially to the circular path. The greater the velocity, the greater the angular momentum of the body.