Formula Angular momentum during circular motion Angular momentum Mass Radius Angular velocity
$$\class{green}{L} = m \, r^2 \, \class{brown}{\omega}$$ $$\class{green}{L} = m \, r^2 \, \class{brown}{\omega}$$ $$m = \frac{ \class{green}{L} }{ r^2 \, \class{brown}{\omega} }$$ $$r = \sqrt{ \frac{ \class{green}{L} }{ m \, \class{brown}{\omega} } }$$ $$\class{brown}{\omega} = \frac{ \class{green}{L} }{ r^2 \, m }$$
Angular momentum
$$ \class{green}{L} $$ Unit $$ \mathrm{Js} $$ Orbital angular momentum of a point mass orbiting at a certain angular velocity and at a certain distance from the axis of rotation. The angular momentum vector is parallel to the angular velocity vector.
Mass
$$ m $$ Unit $$ \mathrm{kg} $$ Mass of the body moving on a circular path. The larger the mass, the larger the orbital angular momentum of the body.
Radius
$$ r $$ Unit $$ \mathrm{m} $$ Radius of the circular path. This is the distance of the mass from the axis of rotation. If you double the radius (without changing the angular velocity), then the orbital angular momentum quadruples.
Angular velocity
$$ \class{brown}{\omega} $$ Unit $$ \frac{\mathrm{rad}}{\mathrm s} $$ Angular velocity indicates the angle per second that the mass travels. In other words, the angular velocity indicates how fast the mass rotates.