Formula Biot-Savart Law for a Thin Wire Magnetic field Position vector to field point Position vector Electric current Conductor line Vacuum permeability
$$\class{violet}{\boldsymbol{B}}(\boldsymbol{r}) ~=~ \frac{\mu_0 \, I}{4\pi} \int_{S} \frac{\boldsymbol{r}-\boldsymbol{R}}{|\boldsymbol{r}-\boldsymbol{R}|^3} \times \text{d}\boldsymbol{s}$$ $$\class{violet}{\boldsymbol{B}}(\boldsymbol{r}) ~=~ \frac{\mu_0 \, I}{4\pi} \int_{S} \frac{\boldsymbol{r}-\boldsymbol{R}}{|\boldsymbol{r}-\boldsymbol{R}|^3} \times \text{d}\boldsymbol{s}$$
Magnetic field
$$ \class{violet}{\boldsymbol{B}}(\boldsymbol{r}) $$ Unit $$ \mathrm{T} $$ Magnetic flux density tells how strong the magnetic field is at the location \( \boldsymbol{r} \) generated by a steady-state current \(I\) through the conductor.
Position vector to field point
$$ \boldsymbol{r} $$ Unit $$ \mathrm{m} $$ Position vector from the coordinate origin to any point in space at which the magnetic field is to be calculated.
Position vector
$$ \boldsymbol{R} $$ Unit $$ \mathrm{m} $$ Location vector points from the coordinate origin to the infinitesimal conductor element \(\text{d}\boldsymbol{s}\).
Here \(\boldsymbol{r} - \boldsymbol{R}\) is the connection vector pointing from the infinitesimal conductor element \(\text{d}\boldsymbol{s}\) to the field point. \(|\boldsymbol{r} - \boldsymbol{R}|\) is the distance of the infinitesimal conductor element \(\text{d}\boldsymbol{s}\) to the field point.
Electric current
$$ I $$ Unit $$ \mathrm{A} $$ Constant electric current inside the conductor.
Conductor line
$$ S $$ Unit $$ $$ The conductor through which the current flows.
Here \(\text{d}\boldsymbol{s}\) is an infinitesimal length element. This length element runs along the conductor.
Vacuum permeability
$$ \mu_0 $$ Unit $$ \frac{\mathrm{Vs}}{\mathrm{Am}} = \frac{ \mathrm{kg} \, \mathrm{m} }{ \mathrm{A}^2 \, \mathrm{s}^2 } $$ The vacuum permeability is a physical constant and has the following experimentally determined value:$$ \mu_0 ~=~ 1.256 \, 637 \, 062 \, 12 ~\cdot~ 10^{-6} \, \frac{\mathrm{Vs}}{\mathrm{Am}} $$