# Formula Coriolis force - magnitude (velocity and angular velocity orthogonal) Winkelgeschwindigkeit Velocity Mass

## Coriolis force

`$$ \class{green}{F_{\text c}} $$`Unit

`$$ \mathrm{N} $$`

Coriolis force is a fictitious force acting on a moving body only in rotating reference systems (like e.g. on the earth). Coriolis force always acts

*orthogonal*to the angular velocity \( \omega \) (e.g. angular velocity of the earth) and the linear velocity \( v \) of the body under consideration (e.g. a ball on the rotation disc).Note that for this formula the direction of the angular velocity must be exactly orthogonal (i.e. at a 90 degree angle) to the velocity.

## Winkelgeschwindigkeit

`$$ \class{brown}{\omega} $$`Unit

`$$ \frac{\mathrm{rad}}{\mathrm s} $$`

Angular velocity indicates the number of rotations per second. For example, the angular velocity of the Earth in units of \( 2 \pi \):

`\[ \omega ~=~ \frac{2\pi}{24 \, \text{h}} ~=~ 7.27 \cdot 10^{-5} \, \frac{1}{\text s} \]`## Velocity

`$$ \class{red}{v} $$`Unit

`$$ \frac{\mathrm m}{\mathrm s} $$`

Velocity of a body of mass \(m\) moving with velocity \(v\) perpendicular to angular velocity \(\omega\). For example, a ball pushed from the edge of the circling disc to the center of the disc.

## Mass

`$$ m $$`Unit

`$$ \mathrm{kg} $$`

Mass of a body moving with velocity \(v\). For example, a ball on a rotating disk.