Formula Coriolis force - magnitude (velocity and angular velocity orthogonal) Winkelgeschwindigkeit Velocity Mass
$$\class{green}{F_{\text c}} ~=~ 2m \, \class{red}{v} \, \class{brown}{\omega}$$ $$\class{green}{F_{\text c}} ~=~ 2m \, \class{red}{v} \, \class{brown}{\omega}$$ $$\class{brown}{\omega} ~=~ \frac{1}{2} \, \frac{ \class{green}{F_{\text c}} }{ m \, \class{red}{v} } $$ $$\class{red}{v} ~=~ \frac{1}{2} \, \frac{ \class{green}{F_{\text c}} }{ m \, \class{brown}{\omega} } $$ $$m ~=~ \frac{1}{2} \, \frac{ \class{green}{F_{\text c}} }{ \class{red}{v} \, \class{brown}{\omega} } $$
Coriolis force
$$ \class{green}{F_{\text c}} $$ Unit $$ \mathrm{N} $$ Coriolis force is a fictitious force acting on a moving body only in rotating reference systems (like e.g. on the earth). Coriolis force always acts orthogonal to the angular velocity \( \omega \) (e.g. angular velocity of the earth) and the linear velocity \( v \) of the body under consideration (e.g. a ball on the rotation disc).
Note that for this formula the direction of the angular velocity must be exactly orthogonal (i.e. at a 90 degree angle) to the velocity.
Winkelgeschwindigkeit
$$ \class{brown}{\omega} $$ Unit $$ \frac{\mathrm{rad}}{\mathrm s} $$ Angular velocity indicates the number of rotations per second. For example, the angular velocity of the Earth in units of \( 2 \pi \):\[ \omega ~=~ \frac{2\pi}{24 \, \text{h}} ~=~ 7.27 \cdot 10^{-5} \, \frac{1}{\text s} \]
Velocity
$$ \class{red}{v} $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$ Velocity of a body of mass \(m\) moving with velocity \(v\) perpendicular to angular velocity \(\omega\). For example, a ball pushed from the edge of the circling disc to the center of the disc.
Mass
$$ m $$ Unit $$ \mathrm{kg} $$ Mass of a body moving with velocity \(v\). For example, a ball on a rotating disk.