Formula Right Circular Cylinder Surface area Radius Height
$$A ~=~ 2\pi \, r \, (r + \class{red}{h})$$ $$A ~=~ 2\pi \, r \, (r + \class{red}{h})$$ $$r ~=~ -\frac{ \class{red}{h} }{2} ~+~ \sqrt{ \left(\frac{ \class{red}{h} }{2}\right)^2 ~+~ \frac{A}{2\pi} }$$ $$\class{red}{h} ~=~ \frac{A}{2\pi \, r} ~-~ r$$
Surface area
$$ A $$ Unit $$ \mathrm{m}^2 $$ Area of the cylinder, which consists of the area of the two bases and the lateral surface area of the cylinder.
Radius
$$ r $$ Unit $$ \mathrm{m} $$ Radius of the cylinder. It corresponds to the radius of the cylinder base.
Height
$$ h $$ Unit $$ \mathrm{m} $$ Height of the cylinder. It is the distance between the two cylinder bases.