Formula Wien's Displacement Law (Radiation Law) Temperature Wavelength
Temperature
$$ T $$ Unit $$ \mathrm{K} $$The sun has its radiation maximum at about a wavelength of \( \class{blue}{\lambda_{\text{max}}} = 500 \, \mathrm{nm} \) (nanometer: \(10^{-9} \, \mathrm{m}\)). With this wavelength we can estimate the temperature of the sun:\begin{align} T &~=~ \frac{2897.8 \,\cdot\, 10^{-6} \, \mathrm{m} \mathrm{K}}{ 500 \, \mathrm{nm} } \\\\ &~=~ \frac{2897.8 \,\cdot\, 10^{-6} \, \mathrm{m} \mathrm{K}}{ 500 \cdot 10^{-9} \, \mathrm{m} } \\\\ &~=~ 5796 \, \mathrm{K} \end{align}
The surface of the sun has a temperature of \( 5796 \, \mathrm{K} \). That is approximately \( 5523^{\circ} \, \mathrm{C}\).
Wavelength
$$ \class{blue}{ \lambda_{\text{max}}} $$ Unit $$ \mathrm{m} $$The surface of the star Sirius in the constellation 'big dog' has approximately a temperature of \( 10 \, 000 \, \mathrm{K} \). With Wien's radiation law we can determine the wavelength of the radiation which is emitted most by Sirius:\begin{align} \class{blue}{ \lambda_{\text{max}}} &~=~ \frac{2897.8 \,\cdot\, 10^{-6} \, \text{m} \text{K}}{ 10 \, 000 \, \mathrm{K} } \\\\ &~=~ 2.89 \cdot 10^{-7} \, \mathrm{m} \\\\ &~=~ 289 \, \mathrm{nm} \end{align}
So Sirius emits the most electromagnetic radiation, which has the wavelength 289 nanometers. This corresponds to extreme UV radiation.