## Level 3

# Illustration **Divergence Integral Theorem (Divergence + Flux)**

## Download

- Vector graphics (SVG) download
*awesome for websites* - Pixel graphics (PNG) download
*awesome for presentations*

**Share** — copy and redistribute the material in any medium or format

**Adapt** — remix, transform, and build upon the material for any purpose, even commercially.

**Sharing and adapting of the illustration is allowed with indication of the link to the illustration.**

The Divergence Integral Theorem states that the divergence of a vector field \(\boldsymbol{F}\) in a considered volume \(V\) corresponds to the flow of the vector field through the surface of that volume:`\[ \int_{V} \left(\nabla \cdot \boldsymbol{F}\right) \, \text{d}v ~=~ \oint_{A}\boldsymbol{F} \cdot \text{d}{\boldsymbol a} \]`

Here the vector field \( \boldsymbol{F} \) was divided into the parallel and perpendicular parts to the considered surface element to show that due to the scalar product only the field part \( \boldsymbol{F}_{||} \) parallel to the surface element contributes to the integral.