## Static Friction (Force, Coefficient)

` $$ F_{\text R} ~=~ \mu_{\text H} \, \class{green}{F_{\text N}} $$ `

Here you will learn the laws of **motion of bodies** (e.g. particles, cars, planets) under the influence of **mechanical forces**. Master the power to predict the future location and state of these bodies - whether the body is particle-like or wave-like.

` $$ F_{\text R} ~=~ \mu_{\text H} \, \class{green}{F_{\text N}} $$ `

` $$ F_{\text R} ~=~ \mu_{\text R} \, \class{green}{F_{\text N}} $$ `

` $$ a_{ \text z } ~=~ \frac{4\pi^2 \, r}{ T^2 } $$ `

` $$ \Delta x' ~=~ \sqrt{1 ~-~ \frac{\class{blue}{v}^2}{c^2}} \, \Delta x $$ `

With the help of a light clock, the deceleration of time in the moving system can be derived by using only Pythagoras' theorem.

` $$ \gamma ~=~ \frac{1}{\sqrt{1 ~-~ \frac{v^2}{c^2}}} $$ `

` $$ \gamma ~=~ \frac{ F_{\text g} }{ V } $$ `

` $$ \rho ~=~ \frac{\class{brown}{m}}{V} $$ `

List of important physical quantities, their symbols, (derived) units and examples with images.

` $$ \varphi ~=~ \arctan\left( \frac{ v_{\text y} }{ v_{\text x} } \right) $$ `

` $$ v ~=~ \sqrt{ {v_{\text x}}^2 ~+~ {v_{\text y}}^2 } $$ `

` $$ \class{blue}{F_{\text N}} ~=~ \frac{b}{ \class{brown}{l} } \, \class{green}{F_{\text g}} $$ `

` $$ \class{red}{F_{\text H}} ~=~ \frac{h}{ \class{brown}{l} } \, \class{green}{F_{\text g}} $$ `

Learn about important physical constants and what their formula symbols and SI units are.

In this exercise (with solution) you practice calculating gravitational potential energy to get a feel for this form of energy.