Single Slit - Right Triangle for Momentum of an Electron FormulaUncertainty Relation (Position, Momentum) $$ \Delta x \, \Delta p ~\geq~ \frac{h}{4\pi} $$
Straight line in the energy-frequency diagram results in the photoelectric effect FormulaPhotoelectric Effect (Energy, Work Function, Velocity) $$ h \, f ~=~ \frac{1}{2} \, m_{\text e} \, v^2 ~+~ W $$
De Broglie wavelength FormulaDe Broglie wavelength (mass, velocity) $$ \lambda ~=~ \frac{h}{m \, v} $$
Energy levels - infinite potential well (1d) FormulaEnergy Levels inside an Infinite Potential Well (1d) $$ W_{n} ~=~ \frac{h^2}{8m \, L^2} \, n^2 $$
Capacitor with set stopping voltage for photoelectric effect FormulaPhotoelectric Effect (Work Function, Stopping Voltage, Frequency) $$ W ~=~ h \, f ~-~ e \, U_{\text G} $$
Bose distribution graph FormulaBose Distribution Function (Probability, Energy, Temperature) $$ P(W) ~=~ \frac{1}{\mathrm{e}^{ \frac{ W - \mu }{ k_{\text B} \, T}} ~-~ 1} $$
Photons of different wavelength FormulaPhoton Energy Per Mole (Wavelength) $$ W_{\text{mol}} ~=~ N_{\text A} \, h \, \frac{c}{\lambda} $$
Photons of different wavelength FormulaPhoton (Energy, Wavelength) $$ W_{\text p} ~=~ h \, \frac{c}{\lambda} $$
Hydrogen atom - term diagram (energy levels) FormulaRydberg Formula for Hydrogen (Wavelength, Quantum Number) $$ \lambda ~=~ \frac{1}{R \, \left( \frac{1}{n^2} - \frac{1}{m^2} \right)} $$