## Energy Band Gap of GaAs (Temperature Dependence)

` $$ W_{\text g} ~=~ 1.522\,\text{eV} - \frac{ 5.8 \cdot 10^{-4} \, \frac{ \text{eV} }{ \text{K} } \, T^2 }{ 300 \,\text{K} + T } $$ `

Both your table and your coffee cup are (usually) in a solid state. Solid state physics studies all properties of solids, such as thermal and electrical conductivity, its atomic structure and other physical quantities.

` $$ W_{\text g} ~=~ 0.742\,\text{eV} - 3.90 \cdot 10^{-4} \, \frac{ \text{eV} }{ \text{K} } \cdot T $$ `

` $$ W_{\text g} ~=~ 1.165\,\text{eV} - 2.84 \cdot 10^{-4} \, \frac{ \text{eV} }{ \text{K} } \cdot T $$ `

` $$ P(W) ~=~ \mathrm{e}^{ -\frac{ W - \mu }{ k_{\text B} \, T}} $$ `

` $$ P(W) ~=~ \frac{1}{\mathrm{e}^{ \frac{ W - \mu }{ k_{\text B} \, T}} ~+~ 1} $$ `

` $$ v_{\text g} ~=~ \sqrt{\frac{D \, a^2}{m}} \, \cos\left(\frac{1}{2} \, k \, a\right) $$ `

Here you will learn the basics of solid state physics - that is, electrical / thermal transport in solid matter, its crystal structure and interactions.

` $$ C_{\text V} ~=~ 3 r \, N \, k_{\text B} $$ `

Here you will find the derivation of the acoustic and optical dispersion relation for a crystal with a diatomic basis.

Here you will learn how to derive the dispersion relation for a linear monoatomic chain using Hooke's law.

Here you will learn the basics of epitaxy (crystal growth), as well as different growth models and epitaxial techniques.